Структура генома прокариот и эукариот, мобильная генетика. Особенности организации генов у прокариот и эукариот Строение прокариотических генов

Прокариоты представлены бактериями и цианобактериями. Их геном включает нуклеотидные последовательности, входящие в состав кольцевой хромосомы, а также дополнительные элементы генома – плазмиды, транспозоны, интегроны, фаги, профаги, остатки фаговой и плазмидной ДНК.

Структура нуклеоида. Бактериальная хромосома имеет гаплоидный набор, представлена двуцепочечной ДНК, замкнутой в кольцо. У Е.coli она состоит из 5х106 п.н., ее молекулярноая масса – 2,5-3,0 х 109 Да. Бактериальную хромосому называют нуклеоидом, т.к. она не окружена ядерной мембраной, компактно уложена и в некоторых местах прикреплена к мембране (20-40 сайтов прикрепления). В ней отмечается отрицательная суперспирализация с образованием петель. При электронной микроскопии выявляется от 12 до 140 петель, которые в центре нуклеоида фиксируются особыми молекулами 4,5 S РНК, образуя сердцевинную структуру. В центре нуклеоида имеются гистоноподобные белки НU (50% всех белков нуклеоида). Однако бактериальная хромосома не имеет нуклеосом, состоящих из гистонов в отличие от эукариот. Большой отрицательный заряд ДНК, формируемый фосфатными группами, нейтрализуется ионами натрия, магния и цинка.

Деспирализованые петли лежат вдоль мембраны, так как на этих участках идёт транскрипция, а освобождающаяся и-РНК сразу поступает на рибосомы (полисомы), расположенные на мембране. Это способствует быстрой экскреции внеклеточных белков-ферментов в окружающую среду, что важно для внеклеточного переваривания сложных субстратов.

Множественность генома. Для прокариот характерна множественность генома, а именно в пределах одной клетки может существовать 4, 8, и более 40 копий одной и той же хромосомы. Такое состояние возникает из-за несбалансированности процессов репликации и деления клетки.

Деление клетки и репликация. Митоза и мейоза у прокариот нет. Размножение происходит путем простого бинарного деления, которому предшествует удвоение молекулы ДНК – репликация, осуществляемая путем синтеза дополнительной цепи. У большинства прокариот Р. двунаправленная, за исключением некоторых плазмид, однако хромосома представляет собой один репликон, т. к. имеет один origin – участок инициации репликации.

Почти сразу после репликации осуществляется метилирование некоторых нуклеотидов – А, Г, Ц, особенно в сайтах рестрикции. Это важно для предотвращения гидролиза собственной ДНК рестриктазами. Система ферментов, обеспечивающая этот процесс, называется системой рестрикции-модификации , и главная её функция – уничтожение всех чужеродных ДНК, проникших в клетку.

Экономность генома у прокариот проявляется в том, что они содержат мало некодирующих последовательностей – 15-20%, у человека некодирующие последовательности ДНК составляют 80-90%. Основная часть хромосомы прокариотов представлена структурными и регуляторными генами . Структурные гены кодируют синтез основных белков и ферментов, участвующих в процессах метаболизма, роста и деления клетки. Регуляторные гены кодируют синтез регуляторных белков, которые руководят процессами метаболизма путем «включения» или «выключения» генов.

Некодирующие последовательности у прокариотов представлены мультикопийными повторами , например, последовательность REP в геноме повторяется 580 раз. Последовательность ГЦТГГТГГ может повторяться на протяжении 5000 пар нуклеотидов – это последовательность для рекомбиназы rec-BCD. Среди некодирующих последовательностей в линейных хромосомах прокариотов обнаруживаются последовательности подобные теломерам эукариот. У прокариотов встречаются также генные семейства , например, у E. сoli имеются семейства оперонов, включающие гены р-РНК и т-РНК.

Геном - совокупность всех генов гаплоидного набора хромосом данного вида организма.
Спирализация ДНК в «хромосоме» прокариот значительно меньше, чем у эукариот.
Геном эукариот:
большое число генов,
большее количество ДНК,
в хромосомах имеется очень сложная система контроля активности генов во времени и пространстве, связанная с дифференциацией клеток и тканей в онтогенезе организма.
Количество ДНК в хромосомах велико и возрастает по мере усложнения организмов. Для эукариот также характерна избыточность генов. Больше половины гаплоидного набора генома эукариотов составляют уникальные гены, представленные лишь по одному разу. У человека таких уникальных генов - 64%.
Т.о. в течение последних 10 лет сформировалось представление, что в состав генома про- и эукариот входят гены:
1) имеющие либо стабильную, либо нестабильную локализацию;
2) уникальная последовательность нуклеотидов представлена в геноме единичными или малым числом копий: к ним относятся структурные и регуляторные гены; уникальные последовательности эукариот, в отличии от генов прокариот, имеют мозаичное строение;
3) многократно повторяющиеся последовательности нуклеотидов являются копиями (повторениями) уникальных последовательностей (у прокариот нет). Копии группируются по несколько десятков или сотен и образуют блоки, локализующиеся в определенном месте хромосомы. Повторы реплицируются, но, как правило, не транскрибируются. Они могут играть роль:
1) регуляторов генной активности;
2) защитного механизма от точковых мутаций;
3) хранение и передача наследственной информации;

Цистрон - наименьшая единица генетической экспрессии. Некоторые ферменты и белки состоят из нескольких неидентичных субъединиц. Таким образом, известная формула «один ген - один фермент» не является абсолютно строгой. Цистрон - это минимальная экспрессируемая генетическая единица, кодирующая одну субъединицу белковой молекулы. Поэтому вышеупомянутую формулу можно перефразировать как «один цистрон - одна субъединица".

Строение мозаичного гена
В конце 70-х годов было выяснено, что у эукариот имеются гены, которые содержат «лишнюю» ДНК, не представленную в молекуле мРНК. Они получили название мозаичных, прерывистых генов; генов, имеющих экзон-интронное строение.
1.Мозаичные гены эукариот имеют больший размер, чем последовательность нуклеотидов, представленная в мРНК (3-5%).
2.Мозаичные гены состоят из экзонов и интронов. Интроны удаляются из первичного транскрипта и отсутствуют в зрелой мРНК, которая состоит только из экзонов. Число и размеры интронов и экзонов индивидуальны для каждого гена, но интроны по размерам значительно больше экзонов.
3.Ген начинается экзоном и заканчивается экзоном, но внутри гена может быть любой набор интронов (гены глобина имеют 3 экзона и 2 интрона) (рис. 20). Экзоны и интроны обозначаются цифрами или буквами в порядке их расположения вдоль гена.).
4. Порядок расположения экзонов в гене совпадает с их расположением в мРНК.
5.На границе экзон-интрон имеется определённая постоянная последовательность нуклеотидов (ГТ - АГ), присутствующая во всех мозаичных генах.
6. Экзон одного гена может быть интроном другого.
7. В мозаичном гене иногда нет однозначного соответствия между геном и кодируемым им белком, то есть одна и та же последовательность ДНК может принимать участие в синтезе различных вариантов белка.
8. Один и тот же транскрипт (про-мРНК) может подвергаться разному сплайсированию, в результате этого сплайсированные участки мРНК могут кодировать разные варианты одного белка.
9. Особенности строения мозаичного гена позволяют осуществлять альтернативный сплайсинг (экзон L - экзон 2,3 или экзон S - экзон 2,3): синтезировать несколько вариантов белка на основе информации одного гена; создавать удачные комбинации белков, а если таковые неудачны, то производить отбор на уровне мРНК при сохранении неизменной ДНК (рис. 21).
В этом проявляется принцип экономного использования генетической информации, т.к. у млекопитающих в процессе транскрипции участвуют приблизительно 5-10% генов.


Организация генома прокариот: Геном прокариот может состоять из одной или нескольких крупных молекул ДНК, называемых хромосомами, и небольших

молекул ДНК – плазмид. В хромосомах представлены практически все гены, необходимые для жизнедеятельности бактерии. Плазмиды же несут гены, необязательные для бактерии, без них клетка может обойтись, хотя в некоторых условиях они способствуют ее выживанию.Хромосомы и плазмиды могут представлять собой как кольцевые, так и линейные двухцепочечные молекулы ДНК. Геном бактерий может состоять из одной или нескольких хромосом и плазмид.Хромосома(ы) в бактериальной клетке представлена(ы) в виде одной копии, т.е. бактерии гаплоидны. Плазмиды же могут присутствовать в клетке как в виде одной копии, так и в нескольких.

Хромосома уложена в компактную структуру – нуклеоид, который имеет овальную или сходную с ней форму. Его структура поддерживается ДНК-связывающими гистоноподобными белками и молекулами РНК. С нуклеоидом также ассоциированы молекулы РНК-полимеразы и ДНК-топоизомеразыI. По периферии нуклеоидарасполагаются петли хромосомной ДНК, которые находятся в транскрипцио в активном состоянии. При подавлении транскрипции эти петли втягиваются внутрь. Нуклеоид не является стабильным образованием и во время различных фаз роста бактериальных клеток изменяет свою форму. Изменение его пространствеой организациисопряжено с изменением транскрипционной активностью определенных генов бактерий.

В состав хромосомы могут входить геномы умеренных фагов. Включение их геномов в клеточный может происходить после заражения фагами бактерий. При этом одни фаговые геномы интегрируют в строго определенные участки хромосомы, другие – в участки различной локализации.

Размер геномов прокариот колеблется от нескольких сотен тысяч до десятка миллионов пар нуклетидов. Геномы прокариот отличаются друг от друга по содержание ГЦ-пар, их доля в их составе колеблется от 23 до 72 %. Нужно отметить, что в белках термофильных бактерий повышено также и содержание полярных аминокислот, что делает их более устойчивыми к денатурации при повышенных температурах. В составе белковхеликобактерий (обитающих вкислой среде) больше аминокислотных остатков аргинина и лизина. Остатки этих аминокислот способны связывать ионы водорода, тем самым, оказывая влияние на кислотность среды, и способствуя выживанию бактерий в сложных экологических условиях.О числе генов в геноме судят по наличию в их составе открытых рамок считывания (ОРС). ОРС представляет собой полинуклеотидную последовательность, потенциально способную кодировать полипептид. О существовании ОРС на тех или иных участках ДНК судят на основании расшифрованной первичной структуры ДНК. Основным критерием принадлежности участка полинуклеотидной цепи к ОРС служит отсутствие стоп-кодонов на достаточно протяженном участке после стартовогокодона. В то же время наличие ОРС является недостаточным условием для утверждения о наличии на да ом участке ДНК гена. Гены, прокариот, как правило, имеют оперонную организацию. В одном опероне обычно представлены гены, ответственные за осуществление одного и того же метаболического процесса.

Организация генома эукариот:Хранителем генетической информации у эукариот так же как и у прокариот, является двухцепочечная молекула ДНК. Основная часть генетической информации у них сосредоточена в клеточном ядре в составе хромосом, значительно меньшая часть представлена в составе ДНК митохондрий, хлоропластов и других пластид. Геномная ДНК эукариот представляет собой совокупность ДНК гаплоидного набора хромосом и внехромосомной ДНК. Общее содержание ДНК, приходящиеся на один гаплоидный набор, носит название величина С. Ее выражают в пг ДНК, дальтонах или в парах нуклеотидов (1 пг = 6,1 10 11 Да = 0,965 10 п.н.). Значение величины С, как правило, возрастает с увеличением организации живых организмов. Однако,у некоторых родственных видов величины С могут значительно отличаться, в то время как морфология и физиология этих видов отличаются друг от друга несущественно. Значение негенной ДНК: существуют несколько гипотез, объясняющих ее роль: некодирующие последовательности генома эукариот способствуют защите генов от химических мутагенов. Ядерная ДНК эукариот состоит из уникальных и повторяющихся последовательностей. Повторяющаяся ДНК в свою очередь может быть разделена на две фракции: умеренно повторяющаяся и часто повторяющаяся ДНК: К часто повторяющейся принадлежит ДНК, представленная в геноме более 105 копий. К этой фракции относится сателлитная ДНК. Содержание сателлитной ДНК составляет в геноме эукариот от 5 до 50 % от всей ДНК. Эта ДНК преимуществео обнаруживается вцентромерных и теломерныхрайонах хромосом, где она выполняет структурные функции. Сателитная ДНК состоит из тандемных повторов длиной от 1 до 20 и более п.н. Благодаря простоте организации и многочисленным копиям эта ДНК обладает способностью к быстрой ренатурации. В геноме эукариот различают микросателлиты, минисателлиты и макросателлиты. Микросателлиты образованы многократно повторяющимися мономерными звеньями (1 – 4 п.н) и имеют размер до нескольких сотен пар нуклеотидов. Они разбросаны по геному, их длина и общее количество копий коррелирует с размером генома. Количество копий микросателлитов в геноме может достигать десятков и сотен тысяч.Макросателлиты обладают в сравнении с микросателлитами и минисателлитами большим размером повторяющегося звена до 1000 и более пар нуклеотидов. Они обнаружены в геномах птиц, кошек и человека. Умеренно повторяющиеся последовательности в геноме представлены до 104 копий. К ним относятся генные семейства и МГЭ.Генные семейства образуют гены, обладающие гомологичной (или идентичной) нуклеотидной последовательностью, и выполняющие одну и ту же или сходные функции. Они могут быть организованы в виде кластеров или же разбросаны по геному. Существование генов в большом числе копий обеспечивает повышенное образование продуктов их экспрессии. МГЭ эукариот составляют в среднем около 10 – 30 % генома. Они могут концентрироваться в определенных участках хромосомы или быть рассеянными по геному. К уникальной ДНК относятся неповторяющиеся нуклеотидные последовательности. Ее содержание у различных видов варьирует от 15 до 98 %. К уникальной ДНК относятся как кодирующие, так и не кодирующие последовательности. При этом большая часть уникальной ДНК не несет функции кодирования. К некодирующей уникальной ДНК относятся интроны, к кодирующей –экзоны.

Определение тонкой структуры гена, т.е. его организации, а также принципы работы, т.е. регуляции активности (включение-выключение), первоначально были установлены для прокариотических клеток.

Эти работы выполнили Франсуа Жакоб и Жак Моно (1961; Нобелевская премия 1965). Согласно концепции Жакоба–Моно, единицей регуляции активности генов у прокариот является оперон. Оперон - функциональная единица генома у прокариот, в состав которой входят цистроны (единицы транскрипции), кодирующие совместно или последовательно работающие белки и объединенные под одним (или несколькими) промоторами, т.е. размеры оперона превышают размеры кодирующих последовательностей ДНК. Такая функциональная организация позволяет эффективнее регулировать экспрессию (проявление) этих генов.

В целом структура оперона включает: промотор, оператор, структурные гены, терминатор (рис.1).

П - Промотор – это регуляторный участок ДНК, который служит для присоединения РНК-полимеразы к молекуле ДНК.

С- Оператор – это регуляторный участок ДНК, который способен присоединять белок-репрессор, который кодируется соответствующим геном. Если репрессор присоединен к оператору, то РНК-полимераза не может двигаться вдоль молекулы ДНК и синтезировать мРНК.

Т- Терминатор – это регуляторный участок ДНК, который служит для отсоединения РНК-полимеразы после окончания синтеза мРНК.

Транскрипция группы структурных генов, регулируется двумя элементами – геном-регулятором и оператором. Оператор часто локализуется между промотором и структурными генами; ген-регулятор может локализоваться рядом с опероном или на некотором расстоянии от него.

Если продуктом гена-регулятора является белок-репрессор, его присоединение к оператору блокирует транскрипцию структурных генов, препятствуя присоединению РНК-полимеразы к специфичному участку – промотору, необходимому для инициации транскрипции. Напротив, если белком-регулятором служит активный апоиндуктор, его присоединение к оператору создает условия для инициации транскрипции. В регуляции работы оперонов участвуют также низкомолекулярные вещества – эффекторы, выступающие как индукторы либо корепрессоры структурных генов, входящих в состав оперонов.

Опероны по количеству цистронов делят на моно-, олиго- и полицистронные, содержащие, соответственно, только один, несколько или много цистронов (генов).

Объединение функционально близких генов в опероны, видимо, постепенно сложилось в эволюции бактерий по той причине, что у них перенос генетической информации обычно осуществляется небольшими порциями (например, при трансдукции или посредством плазмид). Значение имеет само по себе сцепление функционально родственных генов, что позволяет бактериям приобретать необходимую функцию в один этап.

Геном эукариот устроен намного сложнее, чем у прокариот. Генетический аппарат эукариотической клетки обособлен в виде клеточного ядра, внутри которого располагаются основные носители наследственности — хромосомы. Количество хромосом видоспецифично и колеблется от двух (лошадиная аскарида) до тысячи (низшие растения). Количество ДНК в клетках эукариот намного выше, чем у бактерий. Оно оценивается с помощью величины С — количества ДНК на гаплоидное число хромосом, т.е. на геном. Оно колеблется у разных видов от 10 4 до 10 11 и часто не коррелирует с уровнем организации вида. Самые большие значения величины С, превышающие содержание ДНК в геноме человека, характерны для некоторых рыб, хвостатых амфибий, лилейных.

Одной из особенностей генома эукариот является структурная и функциональная связь ДНК с белками . Она обусловлена особенностями процесса передачи генетической информации и регуляторной функцией белков. Информация передается от клетки к клетке в процессе сложного процесса клеточного деления (митоза или мейоза). Для полного и точного распределения ее между дочерними клетками в интерфазе происходит процесс удвоения количества ДНК, а в начале деления (профазе) — процесс конденсации интерфазных хромосом. В итоге хромосомы приобретают вид компактных плотных тел. Компактизация хромосом исключает риск их запутывания во время расхождения к разным полюсам в анафазе. В этих структурных преобразованиях хромосом участвуют ядерные белки — гистоны, которые осуществляют суперспирализацию ДНК. Гистоны выступают также в качестве регуляторов матричной активности интерфазных хромосом, т.к. связь гистона с функционирующим участком хромосомы переводит его в гетерохроматическое, т.е. сильно спирализованное и, следовательно, неактивное состояние.

Присутствие в составе эукариотических хромосом белков, количество которых удваивается синхронно с удвоением ДНК, делает процесс репликации хромосом более длительным.

Характерной особенностью генома эукариот является избыточность ДНК , количество которой намного превышает то, которое необходимо для кодирования структуры всех клеточных белков. Одной из причин избыточности является наличие повторяющихся последовательностей нуклеотидов. Их существование впервые было установлено в конце 60-х гг. ХХ в. американскими исследователями Р. Бриттеном и Д. Девидсоном при изучении кинетики ренатурации ДНК (воссоединения одиночных цепей). В настоящее время установлено, что в составе эукариотической ДНК присутствуют два типа повторов — умеренноповторяющиеся п.н. и высокоповторяющиеся п.н. Умеренные повторы встречаются в виде десятков и сотен копий; средний размер их составляет ≈ 300-400 п.н. Они могут быть прямыми и инвертированными (палиндромы). Между повторами располагаются неповторяющиеся участки ДНК. Высокоповторяющиеся п.н. представляют собой короткие фрагменты ДНК (десятки п.н.), которые представлены большим количеством копий (до 106). В ряде случаев состав оснований в этих повторах отличается от такового в геноме в целом, в результате чего повторы могут образовывать отдельную фракцию с определенной плавучей плотностью. Эта фракция называется сателлитной ДНК. Она никогда не транскрибируется, в связи с чем ее называют также “молчащей”. Установлено, что сателлитная ДНК локализована в гетерохроматических районах хромосом: в теломерах, около центромеры, в ядрышке. Считается, что она выполняет регуляторную функцию, обеспечивая структурные преобразования хромосом во время процесса передачи генетической информации от клетки к клетке.

Избыточность ДНК в геноме эукариот в значительной мере создается также за счет того, что в его составе много нуклеотидных последовательностей, которые не кодируют структуру белков. Некоторые из них входят в состав генов, как например, интроны — вставки. Кроме того, есть так называемые сигнальные последовательности, которые не транскрибируются, а служат лишь для связывания белков-регуляторов. К их числу относятся промоторы, участки, контролирующие спирализацию хромосом; участки прикрепления хромосом к веретену и др.

Лишь немногие гены присутствуют в эукариотическом геноме в единственной копии. Основная их масса представлена разным числом копий. Расположенные рядом идентичные гены образуют кластеры . Существование кластеров говорит о большой роли дупликаций генов в эволюции геномов. Пример кластеров: гены белков эритроцитов — глобинов. Гемоглобин является тетрамером, состоящим из 4-х полипептидных цепей: 2α и 2β. Каждый тип цепей кодируется генами, организованными в кластер. У человека α-кластер располагается в 11-й хромосоме, а β-кластер — в 16-й хромосоме. β-кластер занимает участок ДНК в 50 тыс. п.н. и включает в себя пять функционально активных генов и один псевдоген. Псевдогены — это нефункционирующие, реликтовые гены, произошедшие в результате мутационных изменений от некогда активных генов. Они не экспрессируются. Гены в составе кластера отделены друг от друга спейсерами — нетранскрибируемыми вставками, в которых иногда могут присутствовать регуляторные участки.

Основным отличием эукариотических генов от генов прокариот является то, что большинство из них имеют прерывистую структуру и состоят из кодирующих участков — экзонов и некодирующих вставок — интронов . Длина экзонов от 100 до 600 п.н., а интронов — от нескольких десятков до многих тысяч п.н. Интроны могут составлять до 75% от длины гена. Прерывистая структура генов создает основу для более тонкого контроля их работы.

В результате транскрипции прерывистых генов образуется первичный продукт — про-иРНК, которая является полной копией гена и содержит в себе участки, соответствующие как экзонам, так и интронам. В процессе транскрипции участвуют три разных типа РНК-полимераз, которые считывают разные гены. РНКП-I считывает гены, кодирующие структуру разных форм рРНК (5,8S, 18S, 28S). РНКП-II ведет транскрипцию генов, кодирующих структуру белков и некоторых мяРНК. И, наконец, РНКП-III считывает гены 5S рРНК, транспортных РНК и мяРНК. В инициации процесса транскрипции принимает участие белковый комплекс, состоящий из различного числа белковых факторов транскрипции. У млекопитающих в его состав входят 12-14 полипептидов с общей массой в 600 кДА. В регуляции интенсивности транскрипции принимают участие специфические регуляторные участки — энхансеры и сайленсеры . Первые усиливают, вторые ослабляют процесс транскрипции. Они могут быть удалены от промотора на тысячи п.н. Под их контролем синтезируются регуляторные белки. В процессе транскрипции промотор и энхансер (или сайленсер) сближаются за счет структурных изменений ДНК, и регуляторные белки взаимодействуют с факторами транскрипции или с РНК-полимеразой.

Для того, чтобы про-иРНК могла играть роль матрицы для синтеза белка, она должна пройти период созревания (процессинг). Главное событие этого периода — удаление из про-иРНК участков, соответствующих интронам, и соединение в единую цепочку оставшихся экзонов. Процесс “сшивания” экзонов называется сплайсингом . В осуществлении сплайсинга большая роль принадлежит малым ядерным РНК (мяРНК) и белкам. Процесс протекает аналогично у всех эукариот. Молекулы мяРНК комплементарно взаимодействуют как с про-иРНК, так и друг с другом. Они обеспечивают удаление интронов и удерживают экзоны вблизи друг от друга.

Процесс сплайсинга может носить альтернативный характер, т.е. сшивание экзонов может осуществляться в разных комбинациях. Многие гены содержат десяток и более экзонов, поэтому число вариантов зрелой иРНК = 2 n , где n — число экзонов. Альтернативный сплайсинг делает систему записи информации экономичной, так как с одного гена можно считывать информацию для синтеза разных белков. Кроме того, он создает возможность регулирования потока информации в зависимости от потребности клетки в том или ином белковом продукте. Альтернативный сплайсинг, в частности, используется при синтезе иммуноглобулинов, факторов транскрипции и других белков.

Полное созревание иРНК включает модификацию обоих ее концов: навешивание кэп-структуры с 5"-конца и присоединение полиадениловой цепочки с 3"-конца. Кэп-структура образуется за счет присоединения к концевому основанию иРНК 5"-конца гуанинового нуклеотида.

Механизм трансляции у эукариот принципиально не отличается от прокариотического. Однако в обслуживании этого этапа синтеза белка принимает участие значительно большее количество белковых факторов трансляции, чем у бактерий.

При характеристике структуры генома эукариот нельзя не сказать о специализированных концевых участках хромосом — теломерах. Теломерная ДНК состоит из многократно повторяющихся коротких блоков нуклеотидов. Впервые теломерная ДНК была изучена у одноклеточных простейших.

В ее состав входят блоки по 6-8 пар нуклеотидов. В одной цепи — это блок TTGGGG (G-богатая цепь), в другой — AACCCC (C-богатая цепь). У человека эта последовательность отличается одним основанием TTAGGG, у растений имеется универсальный блок TTTAGGG. Протяженность теломерной ДНК у человека колеблется от 2 до 20 тыс. п.н. Теломерная ДНК никогда не транскрибируется и входит в состав сателлитной ДНК. С теломерными районами хромосом взаимодействует фермент теломераза, который устраняет возникающие в них повреждения. С укорочением теломер в результате потери концевых участков, вызванной снижением активности этого фермента, связывают процесс старения клеток.

Существенным отличием функционирования эукариотического генома по сравнению с прокариотическим является многоуровневый характер регуляции действия генов. У прокариот возможен только один тип регуляции — на уровне транскрипции с помощью оперонной системы. У эукариот, благодаря прерывистой структуре генов, к этому типу регуляции добавляется еще посттранскрипционная (сплайсинг, модификация) регуляция и регуляция на уровне трансляции (неоднозначность трансляции). Кроме того, присутствие в хромосомах гистонов позволяет осуществлять групповой контроль за действием генов с помощью механизма структурных преобразований ДНК — перевода участков хромосом из активного (эухроматического) в неактивное (гетерохроматическое) состояние. Такие преобразования иногда затрагивают целые хромосомы и даже весь геном целиком. В качестве примера хромосомного уровня регуляции можно привести образование в клетках женского пола млекопитающих и человека полового хроматина (тельца Барра). Это — крупная гранула хроматина, представляющая собой одну из двух Х-хромосом, максимально конденсированную, и, следовательно, неактивную. Примером инактивации всего генома служит процесс спермиогенеза у животных, во время которого конденсацией охвачены все хромосомы сперматозоида, что делает их неактивными. Это является защитным механизмом для половых клеток в случае повреждения их ДНК (например, при облучении). Возникающие в них мутации, если они не летальны, могут проявиться только при восстановлении функциональной активности мужского генома при дифференциации зародыша. Однако рецессивность большинства мутаций отодвигает их возможное проявление, по крайней мере, до следующего поколения (до перехода в гомозиготное состояние) или вообще исключает его.