Интеграл подстановка. Методы интегрирования. Интегрирование сложных тригонометрических функций

Первообразная F(x) от функции f(x) - это такая функция, производная которой равна f(x) :
F′(x) = f(x), x ∈ Δ ,
где Δ - промежуток, на котором выполняется данное уравнение.

Совокупность всех первообразных называется неопределенным интегралом:
,
где C - постоянная, не зависящая от переменной x .

Основные формулы и методы интегрирования

Таблица интегралов

Конечная цель вычисления неопределенных интегралов - путем преобразований, привести заданный интеграл к выражению, содержащему простейшие или табличные интегралы.
См. Таблица интегралов >>>

Правило интегрирования суммы (разности)

Вынесение постоянной за знак интеграла

Пусть c - постоянная, не зависящая от x . Тогда ее можно вынести за знак интеграла:

Замена переменной

Пусть x - функция от переменной t , x = φ(t) , тогда
.
Или наоборот, t = φ(x) ,
.

С помощью замены переменной можно не только вычислить простые интегралы, но и упростить вычисление более сложных.

Правило интегрирования по частям

Интегрирование дробей (рациональных функций)

Введем обозначение. Пусть P k (x), Q m (x), R n (x) обозначают многочлены степеней k, m, n , соответственно, относительно переменной x .

Рассмотрим интеграл, состоящий из дроби многочленов (так называемая рациональная функция):

Если k ≥ n , то сначала нужно выделить целую часть дроби:
.
Интеграл от многочлена S k-n (x) вычисляется по таблице интегралов.

Остается интеграл:
, где m < n .
Для его вычисления, подынтегральное выражение нужно разложить на простейшие дроби.

Для этого нужно найти корни уравнения:
Q n (x) = 0 .
Используя полученные корни, нужно представить знаменатель в виде произведения сомножителей:
Q n (x) = s (x-a) n a (x-b) n b ... (x 2 +ex+f) n e (x 2 +gx+k) n g ... .
Здесь s - коэффициент при x n , x 2 + ex + f > 0 , x 2 + gx + k > 0 , ... .

После этого разложить дробь на простейшие:

Интегрируя, получаем выражение, состоящее из более простых интегралов.
Интегралы вида

приводятся к табличным подстановкой t = x - a .

Рассмотрим интеграл:

Преобразуем числитель:
.
Подставляя в подынтегральное выражение, получаем выражение, в которое входят два интеграла:
,
.
Первый, подстановкой t = x 2 + ex + f приводится к табличному.
Второй, по формуле приведения:

приводится к интегралу

Приведем его знаменатель к сумме квадратов:
.
Тогда подстановкой , интеграл

также приводится к табличному.

Интегрирование иррациональных функций

Введем обозначение. Пусть R(u 1 , u 2 , ... , u n) означает рациональную функцию от переменных u 1 , u 2 , ... , u n . То есть
,
где P, Q - многочлены от переменных u 1 , u 2 , ... , u n .

Дробно-линейная иррациональность

Рассмотрим интегралы вида:
,
где - рациональные числа, m 1 , n 1 , ..., m s , n s - целые числа.
Пусть n - общий знаменатель чисел r 1 , ..., r s .
Тогда интеграл сводится к интегралу от рациональных функций подстановкой:
.

Интегралы от дифференциальных биномов

Рассмотрим интеграл:
,
где m, n, p - рациональные числа, a, b - действительные числа.
Такие интегралы сводятся к интегралам от рациональных функций в трех случаях.

1) Если p - целое. Подстановка x = t N , где N - общий знаменатель дробей m и n .
2) Если - целое. Подстановка a x n + b = t M , где M - знаменатель числа p .
3) Если - целое. Подстановка a + b x - n = t M , где M - знаменатель числа p .

Если ни одно из трех чисел не является целым числом, то по теореме Чебышева интегралы данного вида не могут быть выражены конечной комбинацией элементарных функций.

В ряде случаев, сначала бывает полезным привести интеграл к более удобным значениям m и p . Это можно сделать с помощью формул приведения:
;
.

Интегралы, содержащие квадратный корень из квадратного трехчлена

Здесь мы рассматриваем интегралы вида:
,

Подстановки Эйлера

Такие интегралы могут быть сведены к интегралам от рациональных функций одной из трех подстановок Эйлера:
, при a > 0 ;
, при c > 0 ;
, где x 1 - корень уравнения a x 2 + b x + c = 0 . Если это уравнение имеет действительные корни.

Тригонометрические и гиперболические подстановки

Прямые методы

В большинстве случаев, подстановки Эйлера приводят к более длинным вычислениям, чем прямые методы. С помощью прямых методов интеграл приводится к одному из перечисленных ниже видов.

I тип

Интеграл вида:
,
где P n (x) - многочлен степени n .

Такие интегралы находятся методом неопределенных коэффициентов, используя тождество:

Дифференцируя это уравнение и приравнивая левую и правую части, находим коэффициенты A i .

II тип

Интеграл вида:
,
где P m (x) - многочлен степени m .

Подстановкой t = (x - α) -1 этот интеграл приводится к предыдущему типу. Если m ≥ n , то у дроби следует выделить целую часть.

III тип

Третий и наиболее сложный тип:
.

Здесь нужно сделать подстановку:
.
После чего интеграл примет вид:
.
Далее, постоянные α, β нужно выбрать такими, чтобы коэффициенты при t обратились в нуль:
B = 0, B 1 = 0 .
Тогда интеграл распадается на сумму интегралов двух видов:
;
,
которые интегрируются, соответственно подстановками:
z 2 = A 1 t 2 + C 1 ;
y 2 = A 1 + C 1 t -2 .

Общий случай

Интегрирование трансцендентных (тригонометрических и показательных) функций

Заранее отметим, что те методы, которые применимы для тригонометрических функций, также применимы и для гиперболических функций. По этой причине мы не будем рассматривать интегрирование гиперболических функций отдельно.

Интегрирование рациональных тригонометрических функций от cos x и sin x

Рассмотрим интегралы от тригонометрических функций вида:
,
где R - рациональная функция. Сюда также могут входить тангенсы и котангенсы, которые следует преобразовать через синусы и косинусы.

При интегрировании таких функций полезно иметь в виду три правила:
1) если R(cos x, sin x) умножается на -1 от перемены знака перед одной из величин cos x или sin x , то полезно другую из них обозначить через t .
2) если R(cos x, sin x) не меняется от перемены знака одновременно перед cos x и sin x , то полезно положить tg x = t или ctg x = t .
3) подстановка во всех случаях приводит к интегралу от рациональной дроби. К сожалению, эта подстановка приводит к более длинным вычислениям чем предыдущие, если они применимы.

Произведение степенных функций от cos x и sin x

Рассмотрим интегралы вида:

Если m и n - рациональные числа, то одной из подстановок t = sin x или t = cos x интеграл сводится к интегралу от дифференциального бинома.

Если m и n - целые числа, то интегралы вычисляются интегрированием по частям. При этом получаются следующие формулы приведения:

;
;
;
.

Интегрирование по частям

Применение формулы Эйлера

Если подынтегральное выражение линейно относительно одной из функций
cos ax или sin ax , то удобно применить формулу Эйлера:
e iax = cos ax + isin ax (где i 2 = -1 ),
заменив эту функцию на e iax и выделив действительную (при замене cos ax ) или мнимую часть (при замене sin ax ) из полученного результата.

Использованная литература:
Н.М. Гюнтер, Р.О. Кузьмин, Сборник задач по высшей математике, «Лань», 2003.

Процесс решения интегралов в науке под названием "математика" называется интегрированием. С помощью интегрирования можно находить некоторые физические величины: площадь, объем, массу тел и многое другое.

Интегралы бывают неопределенными и определенными. Рассмотрим вид определенного интеграла и попытаемся понять его физический смысл. Представляется он в таком виде: $$ \int ^a _b f(x) dx $$. Отличительная черта написание определенного интеграла от неопределенного в том, что есть пределы интегрирования a и b. Сейчас узнаем для чего они нужны, и что всё-таки значит определенный интеграл. В геометрическом смысле такой интеграл равен площади фигуры, ограниченной кривой f(x), линиями a и b, и осью Ох.

Из рис.1 видно, что определенный интеграл - это и есть та самая площадь, что закрашена серым цветом. Давайте, проверим это на простейшем примере. Найдем площадь фигуры на изображении представленном ниже с помощью интегрирования, а затем вычислим её обычным способом умножения длины на ширину.

Из рис.2 видно, что $ y=f(x)=3 $, $ a=1, b=2 $. Теперь подставим их в определение интеграла, получаем, что $$ S=\int _a ^b f(x) dx = \int _1 ^2 3 dx = $$ $$ =(3x) \Big|_1 ^2=(3 \cdot 2)-(3 \cdot 1)=$$ $$=6-3=3 \text{ед}^2 $$ Сделаем проверку обычным способом. В нашем случае длина = 3, ширина фигуры = 1. $$ S = \text{длина} \cdot \text{ширина} = 3 \cdot 1 = 3 \text{ед}^2 $$ Как видим, всё отлично совпало.

Появляется вопрос: как решать интегралы неопределенные и какой у них смысл? Решение таких интегралов - это нахождение первообразных функций. Этот процесс противоположный нахождению производной. Для того, чтобы найти первообразную можно использовать нашу помощь в решении задач по математике или же необходимо самостоятельно безошибочно вызубрить свойства интегралов и таблицу интегрирования простейших элементарных функций. Нахождение выглядит так $$ \int f(x) dx = F(x) + C \text{где} F(x) $ - первообразная $ f(x), C = const $.

Для решения интеграла нужно интегрировать функцию $ f(x) $ по переменной. Если функция табличная, то записывается ответ в подходящем виде. Если же нет, то процесс сводится к получению табличной функции из функции $ f(x) $ путем хитрых математических преобразований. Для этого есть различные методы и свойства, которые рассмотрим далее.

Итак, теперь составим алгоритм как решать интегралы для чайников?

Алгоритм вычисления интегралов

  1. Узнаем определенный интеграл или нет.
  2. Если неопределенный, то нужно найти первообразную функцию $ F(x) $ от подынтегральной $ f(x) $ с помощью математических преобразований приводящих к табличному виду функцию $ f(x) $.
  3. Если определенный, то нужно выполнить шаг 2, а затем подставить пределы $ а $ и $ b $ в первообразную функцию $ F(x) $. По какой формуле это сделать узнаете в статье "Формула Ньютона Лейбница".

Примеры решений

Итак, вы узнали как решать интегралы для чайников, примеры решения интегралов разобрали по полочкам. Узнали физический и геометрический их смысл. О методах решения будет изложено в других статьях.

Вычислить первообразные функции мы можем не всегда, но задача на дифференцирование может быть решена для любой функции. Именно поэтому единого метода интегрирования, который можно использовать для любых типов вычислений, не существует.

В рамках данного материала мы разберем примеры решения задач, связанных с нахождением неопределенного интеграла, и посмотрим, для каких типов подынтегральных функций подойдет каждый метод.

Yandex.RTB R-A-339285-1

Метод непосредственного интегрирования

Основной метод вычисления первообразной функции – это непосредственное интегрирование. Это действие основано на свойствах неопределенного интеграла, и для вычислений нам понадобится таблица первообразных. Прочие методы могут лишь помочь привести исходный интеграл к табличному виду.

Пример 1

Вычислите множество первообразных функции f (x) = 2 x + 3 2 · 5 x + 4 3 .

Решение

Для начала изменим вид функции на f (x) = 2 x + 3 2 · 5 x + 4 3 = 2 x + 3 2 · 5 x + 4 1 3 .

Мы знаем, что интеграл суммы функций будет равен сумме этих интегралов, значит:

∫ f (x) d x = ∫ 3 2 · 5 x + 4 3 = 2 x + 3 2 · 5 x + 4 1 3 d x = ∫ 3 2 · 5 x + 4 1 3 d x

Выводим за знак интеграла числовой коэффициент:

∫ f (x) d x = ∫ 2 x d x + ∫ 3 2 (5 x + 4) 1 3 d x = = ∫ 2 x d x + 2 3 · ∫ (5 x + 4) 1 3 d x

Чтобы найти первый интеграл, нам нужно будет обратиться к таблице первообразных. Берем из нее значение ∫ 2 x d x = 2 x ln 2 + C 1

Чтобы найти второй интеграл, потребуется таблица первообразных для степенной функции ∫ x p · d x = x p + 1 p + 1 + C , а также правило ∫ f k · x + b d x = 1 k · F (k · x + b) + C .

Следовательно, ∫ f (x) d x = ∫ 2 x d x + 3 2 · ∫ 5 x + 4 1 3 d x = = 2 x ln 2 + C 1 + 3 2 · 3 20 · (5 x + 4) 4 3 + C 2 = = 2 x ln 2 + 9 40 · 5 x + 4 4 3 + C

У нас получилось следующее:

∫ f (x) d x = ∫ 2 x d x + 3 2 · ∫ 5 x + 4 1 3 d x = = 2 x ln 2 + C 1 + 3 2 · 3 20 · (5 x + 4) 4 3 + C 2 = = 2 x ln 2 + 9 40 · 5 x + 4 4 3 + C

причем C = C 1 + 3 2 C 2

Ответ: ∫ f (x) d x = 2 x ln 2 + 9 40 · 5 x + 4 4 3 + C

Непосредственному интегрированию с применением таблиц первообразных мы посвятили отдельную статью. Рекомендуем вам ознакомиться с ней.

Метод подстановки

Такой метод интегрирования заключается в выражении подынтегральной функции через новую переменную, введенную специально для этой цели. В итоге мы должны получить табличный вид интеграла или просто менее сложный интеграл.

Этот метод очень полезен, когда нужно интегрировать функции с радикалами или тригонометрические функции.

Пример 2

Вычислите неопределенный интеграл ∫ 1 x 2 x - 9 d x .

Решение

Добавим еще одну переменную z = 2 x - 9 . Теперь нам нужно выразить x через z:

z 2 = 2 x - 9 ⇒ x = z 2 + 9 2 ⇒ d x = d z 2 + 9 2 = z 2 + 9 2 " d z = 1 2 · z d z = z d z

∫ d x x 2 x - 9 = ∫ z d z z 2 + 9 2 · z = 2 ∫ d z z 2 + 9

Берем таблицу первообразных и узнаем, что 2 ∫ d z z 2 + 9 = 2 3 a r c t g z 3 + C .

Теперь нам нужно вернуться к переменной x и получить ответ:

2 3 a r c t g z 3 + C = 2 3 a r c t g 2 x - 9 3 + C

Ответ: ∫ 1 x 2 x - 9 d x = 2 3 a r c t g 2 x - 9 3 + C .

Если нам приходится интегрировать функции с иррациональностью вида x m (a + b x n) p , где значения m , n , p являются рациональными числами, то важно правильно составить выражение для введения новой переменной. Подробнее об этом читайте в статье, посвященной интегрированию иррациональных функций.

Как мы говорили выше, метод подстановки удобно использовать, когда требуется интегрировать тригонометрическую функцию. Например, с помощью универсальной подстановки можно привести выражение к дробно рациональному виду.

Это метод объясняет правило интегрирования ∫ f (k · x + b) d x = 1 k · F (k · x + b) + C .

Добавляем еще одну переменную z = k · x + b . У нас получается следующее:

x = z k - b k ⇒ d x = d z k - b k = z k - b k " d z = d z k

Теперь берем получившиеся выражения и добавляем их в интеграл, заданный в условии:

∫ f (k · x + b) d x = ∫ f (z) · d z k = 1 k · ∫ f (z) d z = = 1 k · F z + C 1 = F (z) k + C 1 k

Если же мы примем C 1 k = C и вернемся к исходной переменной x , то у нас получится:

F (z) k + C 1 k = 1 k · F k x + b + C

Метод подведения под знак дифференциала

Это метод основывается на преобразовании подынтегрального выражения в функцию вида f (g (x)) d (g (x)) . После этого мы выполняем подстановку, вводя новую переменную z = g (x) , находим для нее первообразную и возвращаемся к исходной переменной.

∫ f (g (x)) d (g (x)) = g (x) = z = ∫ f (z) d (z) = = F (z) + C = z = g (x) = F (g (x)) + C

Чтобы быстрее решать задачи с использованием этого метода, держите под рукой таблицу производных в виде дифференциалов и таблицу первообразных, чтобы найти выражение, к которому надо будет приводится подынтегральное выражение.

Разберем задачу, в которой нужно вычислить множество первообразных функции котангенса.

Пример 3

Вычислите неопределенный интеграл ∫ c t g x d x .

Решение

Преобразуем исходное выражение под интегралом с помощью основных тригонометрических формул.

c t g x d x = cos s d x sin x

Смотрим в таблицу производных и видим, что числитель можно подвести под знак дифференциала cos x · d x = d (sin x) , значит:

c t g x d x = cos x d x sin x = d sin x sin x , т.е. ∫ c t g x d x = ∫ d sin x sin x .

Допустим, что sin x = z , в таком случае ∫ d sin x sin x = ∫ d z z . Согласно таблице первообразных, ∫ d z z = ln z + C . Теперь вернемся к исходной переменной ∫ d z z = ln z + C = ln sin x + C .

Все решение в кратком виде можно записать так:

∫ с t g x d x = ∫ cos x d x sin x = ∫ d sin x sin x = s i n x = t = = ∫ d t t = ln t + C = t = sin x = ln sin x + C

Ответ: ∫ с t g x d x = ln sin x + C

Метод подведения под знак дифференциала очень часто используется на практике, поэтому советуем вам прочесть отдельную статью, посвященную ему.

Метод интегрирования по частям

Этот метод основывается на преобразовании подынтегрального выражения в произведение вида f (x) d x = u (x) · v " x d x = u (x) · d (v (x)) , после чего применяется формула ∫ u (x) · d (v (x)) = u (x) · v (x) - ∫ v (x) · d u (x) . Это очень удобный и распространенный метод решения. Иногда частичное интегрирование в одной задаче приходится применять несколько раз до получения нужного результата.

Разберем задачу, в которой нужно вычислить множество первообразных арктангенса.

Пример 4

Вычислите неопределенный интеграл ∫ a r c t g (2 x) d x .

Решение

Допустим, что u (x) = a r c t g (2 x) , d (v (x)) = d x , в таком случае:

d (u (x)) = u " (x) d x = a r c t g (2 x) " d x = 2 d x 1 + 4 x 2 v (x) = ∫ d (v (x)) = ∫ d x = x

Когда мы вычисляем значение функции v (x) , прибавлять постоянную произвольную С не следует.

∫ a r c t g (2 x) d x = u (x) · v (x) - ∫ v (x) d (u (x)) = = x · a r c t g (2 x) - ∫ 2 x d x 1 + 4 x 2

Получившийся интеграл вычисляем, используя метод подведения под знак дифференциала.

Поскольку ∫ a r c t g (2 x) d x = u (x) · v (x) - ∫ v (x) d (u (x)) = x · a r c t g (2 x) - ∫ 2 x d x 1 + 4 x 2 , тогда 2 x d x = 1 4 d (1 + 4 x 2) .

∫ a r c t g (2 x) d x = x · a r c t g (2 x) - ∫ 2 x d x 1 + 4 x 2 = = x · a r c t g (2 x) - 1 4 ln 1 + 4 x 2 + C 1 = = x · a r c t g (2 x) - 1 4 ln 1 + 4 x 2 + C

Ответ: ∫ a r c t g (2 x) d x = x · a r c t g (2 x) - 1 4 ln 1 + 4 x 2 + C .

Главная сложность применения такого метода – это необходимость выбирать, какую часть брать за дифференциал, а какую – за функцию u (x) . В статье, посвященной методу интегрирования по частям, даны некоторые советы по этому вопросу, с которыми следует ознакомиться.

Если нам требуется найти множество первообразных дробно рациональной функции, то нужно сначала представить подынтегральную функцию в виде суммы простейших дробей, а потом интегрировать получившиеся дроби. Подробнее см. статью об интегрировании простейших дробей.

Если мы интегрируем степенное выражение вида sin 7 x · d x или d x (x 2 + a 2) 8 , то нам будут полезны рекуррентные формулы, которые могут постепенно понижать степень. Они выводятся с помощью последовательного многократного интегрирования по частям. Советуем прочитать статью «Интегрирование с помощью рекуррентных формул.

Подведем итоги. Для решения задач очень важно знать метод непосредственного интегрирования. Другие методы (подведение под знак дифференциала, подстановка, интегрирование по частям) также позволяют упростить интеграл и привести его к табличному виду.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Приведение к табличному виду или метод непосредственного интегрирования . С помощью тождественных преобразований подынтегральной функции интеграл сводится к интегралу, к которому применимы основные правила интегрирования и возможно использование таблицы основных интегралов .

Пример

Задание. Найти интеграл $\int 2^{3 x-1} d x$

Решение. Воспользуемся свойствами интеграла и приведем данный интеграл к табличному виду.

$\int 2^{3 x-1} d x=\int 2^{3 x} \cdot 2^{-1} d x=\frac{1}{2} \int\left(2^{3}\right)^{x} d x=$

$=\frac{1}{2} \int 8^{x} d x=\frac{8^{x}}{2 \ln 8}+C$

Ответ. $\int 2^{3 x-1} d x=\frac{8^{x}}{2 \ln 8}+C$

ссылке →

2. Внесение под знак дифференциала

3. Интегрирование заменой переменной

Интегрирование заменой переменной или методом подстановки . Пусть $x=\phi(t)$, где функция $\phi(t)$ имеет непрерывную производную $\phi^{\prime}(t)$, а между переменными $x$ и $t$ существует взаимно однозначное соответствие. Тогда справедливо равенство

$\int f(x) d x=\int f(\phi(t)) \cdot \phi^{\prime}(t) \cdot d t$

Определенный интеграл зависит от переменной интегрирования, поэтому если выполнена замена переменных, то обязательно надо вернуться к первоначальной переменной интегрирования.

Пример

Задание. Найти интеграл $\int \frac{d x}{3-5 x}$

Решение. Заменим знаменатель на переменную $t$ и приведем исходный интеграл к табличному.

$=-\frac{1}{5} \ln |t|+C=-\frac{1}{5} \ln |3-5 x|+C$

Ответ. $\int \frac{d x}{3-5 x}=-\frac{1}{5} \ln |3-5 x|+C$

Подробнее о данном методе решении интегралов по ссылке →

4. Интегрирование по частям

Интегрированием по частям называют интегрирование по формуле

$\int u d v=u v-\int v d u$

При нахождении функции $v$ по ее дифференциалу $d v$ можно брать любое значение постоянной интегрирования $C$, так как она в конечный результат не входит. Поэтому для удобства будем брать $C=0$ .

Использование формулы интегрирования по частям целесообразно в тех случаях, когда дифференцирование упрощает один из сомножителей, в то время как интегрирование не усложняет другой.

Пример

Задание. Найти интеграл $\int x \cos x d x$

Решение. В исходном интеграле выделим функции $u$ и $v$, затем выполним интегрирование по частям.

$=x \sin x+\cos x+C$

Ответ. $\int x \cos x d x=x \sin x+\cos x+C$

Определение . Метод интегрирования, при котором данный интеграл путем тождественных преобразований подынтегральной функции (или подынтегрального выражения) и применяя свойства неопределенного интеграла приводится к одному или нескольким табличным интегралам называется непосредственным интегрированием .

Часто при непосредственном интегрировании используются следующие преобразования дифференциала (операция «внесения под знак дифференциала»):

Например . 1) ;

При вычислении данных интегралов пользовались формулами 1 и 2 таблицы интегралов, которая приведена ниже.

Таблица основных неопределенных интегралов.

  1. Метод интегрирования подстановкой (заменой переменной).

Метод интегрирования подстановкой заключается во введении новой переменной интегрирования. При этом заданный интеграл приводится к новому интегралу, который является табличным или к нему сводящимся.

Данный метод интегрирования основывается на следующей теореме:

Теорема. Пусть функцию f(x) можно представить в виде: f(x)=g(j(x))×j¢(х), тогда если G(u) является первообразной для g(u), то и G(j(x)) является первообразной для g(j(x)). То есть имеет место равенство: .

Например.

  1. Метод интегрирования по частям.

Интегрирование по частям состоит в том, что подынтегральное выражение некоторого интеграла представляется в виде произведения двух сомножителей u и dv, затем используется формула интегрирования по частям.

Теорема Пусть функции u(x) и v(x) дифференцируемы, тогда имеет место формула:

Так как u¢(x)dx=du, v¢(x)dx=dv, то формулу можно переписать в виде:

Например.

Формулу интегрирования по частям в процессе решения можно применять несколько раз.

Например

Например

перенесем из правой части равенства в левую:

Некоторые типы интегралов, которые удобно вычислять методом интегрирования по частям:

; ; , где Р(х)– многочлен от х, к – некоторое число u=P(x), dv – остальные множители
; ; ; ; dv=P(x)dх, u – все остальные множители
; , где а и b – некоторые числа , dv – остальные множители
  1. Интегрирование рациональных дробей.

ОпределениеРациональными будем называть дроби вида , где P n (x), Q m (x) многочлены соответственно n-ой и m-ой степени от х. К простейшим рациональным дробям отнесем дроби четырех типов:

Где А и а – некоторые действительные числа, – простейшая дробь первого типа;

– простейшая дробь второго типа;

– простейшая дробь третьего типа;

– простейшая дробь четвертого типа.

Рассмотрим интегрирование дробей первых трех типов.

3) Интегрирование простейшей дроби третьего типа проводится в два этапа. Разберем процесс интегрирования на примере.

(выделим в числителе производную знаменателя для последующего внесения под знак дифференциала: (х 2 +2х+3)¢=2х+2)

Определение Рациональные дроби называются правильными если степень многочлена в числителе меньше степени многочлена в знаменателе и неправильными если степень многочлена в числителе больше или равна степени многочлена в знаменателе.

В случае неправильной рациональной дроби возможно выделить целую часть. Для этого многочлен из числителя делят с остатком на многочлен знаменателя. Полученное частное будет целой частью, а остаток – числителем новой правильной рациональной дроби. Например, выделим целую часть: .

Таким образом, интегрирование рациональных дробей в обоих случаях сводится к интегрированию правильной рациональной дроби, которая не всегда является простейшей рациональной дробью одного из четырех типов.

Рассмотрим некоторый многочлен Q(x). Пусть число а является корнем этого многочлена, тогда Q(x)=(х-а)Q 1 (x), где Q 1 (x) – многочлен степени на 1 меньше степени Q(x). Число а может быть корнем кратности к, тогда Q(x)=(х-а) к Q 2 (x), где Q 2 (x) – многочлен степени на к меньше степени Q(x). Кроме того, многочлен Q(x) наряду с действительными корнями может иметь комплексный корень a+bi, тогда комплексное число a-bi также будет корнем Q(x). В этом случае Q(x)=(х 2 +px+q)Q 3 (x), где х 2 +px+q=(х-(a+bi))(х-(a-bi)). Если же указанные комплексные числа являются корнями кратности m, тогда Q(x)=(х 2 +px+q) m Q 4 (x).

Таким образом, всякий многочлен Q(x) можно представить в виде:

Q(x)=(х-а 1) к 1 (х-а 2) к 2 …(х-а n) k n (х 2 +p 1 x+q 1) m 1 (х 2 +p 2 x+q 2) m 2 …(х 2 +p s x+q s) m s .

Теорема. Любую правильную рациональную дробь можно представить в виде суммы простейших рациональных дробей 1-4 типов.

Например. Рассмотрим алгоритм представления правильной рациональной дроби в виде суммы простейших рациональных дробей 1-4 типов.

Так как знаменатели дробей равны, очевидно, должны быть равны и числители, а это равенство возможно при равенстве коэффициентов при одинаковых степенях х. Таким образом, подставив вместо неопределенных коэффициентов A, B, C их значения получим: .

Например Найти интеграл .

Подынтегральная функция является неправильной рациональной дробью. После деления числителя на знаменатель с остатком получим: .

Разложим правильную рациональную дробь на простейшие методом неопределенных коэффициентов:

Отсюда следует, что Решая полученную систему линейных уравнений, получаем Тогда , то есть = ;

Найдем отдельно

Таким образом, .

  1. Интегрирование тригонометрических функций.

1. Пусть необходимо найти , где R – некоторая функция

При отыскании таких интегралов часто бывает полезно воспользоваться универсальной тригонометрической подстановкой: . С ее помощью всегда можно перейти от интеграла тригонометрической функции к интегралу от рациональной функции:

Х=2arctgt, .

2. Если функция R(sinx, cosx) нечетна относительно sinx, то есть R(-sinx, cosx)=- R(sinx, cosx), то применяют подстановку cosx=t;

3. Если функция R(sinx, cosx) нечетна относительно соsx, то есть R(sinx, -cosx)=- R(sinx, cosx), то применяют подстановку sinx=t;

4. Если функция R(sinx, cosx) четна относительно sinx и соsx, то есть R(-sinx, -cosx)=R(sinx, cosx), то применяют подстановку tgx=t; такая же подстановка применяется в случае .

Например.

Например Найти интеграл . Подынтегральная функция четна относительно sinx, тогда применяем подстановку tgx=t.

5. Для нахождения интегралов вида используют следующие приемы:

а) если n – нечетное целое положительное число, то используют подстановку sinx=t;

б) если m – нечетное целое положительное число, то используют подстановку соsx=t;

в) если m и n – целые неотрицательные четные числа, то используют формулы понижения порядка ; ; ;

г) если m+n – четное отрицательное целое число, то используют подстановку tgx=t.

Например. .

Например. . ; приводятся к интегралам от тригонометрических функций с помощью следующих подстановок:

а) для интеграла подстановка х=a×sint;

б) для интеграла подстановка х=a×tgt;

в) для интеграла подстановка .